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ABSTRACT 
Fuel use and resupply provisions are vital to all military combat operations, and any significant reduction in 

the amount of fuel required to sustain the force becomes a large tactical advantage for commanders  Developers 

have been seeking methods that offer even small gains in fuel economy.  Small gains for a fleet of thousands of 

vehicles translate into fewer fuel convoys to theater and large costs savings over time.  The challenge to the 

tester and evaluator is to determine if these small advances are relevant or merely normally expected test 

variation in the acquired fuel consumption parameters.  All too often only the mean fuel economy parameters are 

compared with and without the new equipment or process without considering test variances inherent in 

collecting the parametric data.  The resulting analysis may then be seriously flawed.  Hypothesis testing is a 

useful statistical method for comparing two sets of test data (sample means and standard deviations) to 

determine if there is a statistically significant difference between the two sets.  Often the two sets of data are 

made up of small sample sizes (5 test trials are very typical for sets of fuel consumption data).  Therefore, for 

purposes of this discussion, we will consider only hypothesis tests for the differences between two sample means 

for small (the number of samples is less than 30) sample sizes.  Several examples of fictional test data will be 

subjected to hypothesis testing to show the value of such an approach. 

 

INTRODUCTION 
It’s well known that our current military operations are 

heavily dependent on fuels, especially those burned in 

generators, aircraft and vehicle systems.  Fuel shipments to 

current war a zones in a recent article in National Defense 

Magazine are on the order of 60 to 70 million gallons per 

month
[1]

.  In 2009, Pentagon officials speaking before the 

House Appropriations Committee cited that the average fully 

burdened fuel cost (the cost to acquire, transport and protect 

fuel) to supply fuel to remote outposts in Afghanistan was 

$400 per gallon
[2]

.  It’s also an accepted fact that fuel 

convoys in current theaters of operation are prized targets of 

opportunity for insurgents.  According to an article in the 

Washington Post, a recent Marine Corps study found that 

one Marine is wounded for every 50 trips made for fuel or 

water in Afghanistan
[3]

.  All defense departments have been 

focused to find savings in the amount of fuel used and 

alternatives to traditional fuels.  Any significant reduction in 

the amount of fuel required to sustain the force becomes a 

large tactical advantage for commanders can mean fewer 

fuel convoys and significant cost savings. 

Very often in fuel consumption testing, customers are 

seeking an improvement in the amount of fuel consumed by 

a vehicle system.  Developers have been seeking methods 

that offer even small gains in fuel economy.  Small gains for 

a fleet of thousands of vehicles translate into fewer fuel 

convoys to theater and large costs savings over time.  The 

challenge to the tester and evaluator is to determine if these 

small advances are relevant or merely normally expected test 

variations in the acquired fuel consumption parameters.  All 

too often in my experience only the mean fuel economy 

parameters are compared with and without the new 

equipment or process without considering test variances 

inherent in collecting the parametric data.  Often test funding 

does not allow for a large number of samples for each 

parameter.  The resulting analysis may then be seriously 

flawed. 
 

ANALYSIS ISSUES 
 A series of examples may illustrate the potential for 

analysis flaws.  We’ll consider two fictitious populations – 

men born in Norway in 1955, and men born in the United 

States in the same year.  As a variable, we’ll pick the current 
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height of adult men from these two populations, and we’ll 

assume that someone spent a good bit of time measuring 

each member’s height simultaneously.  You’ll remember 

from your grade school days that if a variable is normally 

distributed, the distribution of the variable in the population 

will resemble a bell shaped curve centered on the population 

mean for the assessed variable.  Figure 1 shows the two 

distributions of the population heights. 

 

 
 

Figure 1:Height distributions of two different populations.  

 

As you can see, the two population distributions for height 

seem to indicate bell-shaped curves, and the population 

means (µ1 and µ2) indicate that for our fictitious populations, 

the mean height of men from Norway is greater than the 

mean height of men from the United States.  Probably more 

important to an analysis is the relative shapes of these two 

distributions.  A general rule of thumb for a normally 

distributed random variable states that 68 percent of the area 

under the distribution curve will lie within one standard 

deviation of the mean value of that parameter.
[4] 

 The wider 

and flatter distribution for U.S. men indicates that there are a 

wider variety of heights for that population, and the standard 

deviation of the height, σ2, will be larger as a result.  The 

Norwegian population is more uniform with respect to 

height, and the standard deviation, σ1 is smaller.   

 The problem for testers and evaluators is that we 

hardly ever get to sample every member of our test 

populations.  We sample from that population.  For a fleet of 

thousands of vehicles to be fielded, we may only get one 

example.  Budgets for testing may be limited, and as a result, 

we may only be able to run three to five iterations of a test 

scenario with that single vehicle.  Instead of dealing with 

population means (µ), we’re typically dealing with a five 

sample average, , and a sample standard deviation, s.  So, 

for our example with the heights of populations, say we sent 

someone to Norway to take the heights of ten randomly 

selected men, and we did the same here in the United States.  

The data may look like Table 1. 

 

TABLE 1.  SAMPLE HEIGHT DATA FOR TWO 

FICTITIOUS POPULATIONS 

 
Sample Height, 

Norwegian 

adult male, in. 

Height, U.S. 

adult male, in. 

1 72 73 

2 69 72 

3 68 68 

4 65 70 

5 73 70 

6 66 68 

7 70 65 

8 69 72 

9 68 71 

10 67 71 

Average,  69 70 

 

Considering only the sample averages, you would 

conclude (incorrectly for our fictitious populations) that 

adult males in the United States are taller than their 

Norwegian counterparts.  By rolling the dice and taking only 

a small sample size for a large population, and then 

compounding the problem by considering only the 

difference between your sample means without considering 

the impact of your sample variance, you’ve set yourself up 

for a high potential for analysis error.  Comparison of means 

alone is a very common practice, and in some cases it is 

appropriate.  But is there a way to compare data with small 

sample sizes to determine if meaningful differences do 

exist?  Fortunately, the answer is affirmative.   
 

HYPOTHESIS TESTING FOR TESTS WITH SMALL 
SAMPLE SIZES - BACKGROUND 

Hypothesis testing is a useful method to compare two sets 

of test data to determine if there is a statistically significant 

difference between the two sets.  Often the two sets of data 

are made up of small sample sizes due to limited budgets 

and a limited number of prototype test vehicles (5 test trials 

for a single vehicle are very typical for sets of fuel 

consumption data that we collect at our test center).  

Therefore, for purposes of this discussion, we will consider 

only hypothesis tests for the differences between two sample 

means for small (the number of samples is less than 30) 

sample sizes. 

Because we deal with small sample sizes, we cannot 

assume that the test statistic for fuel consumption will be a 

normally distributed random variable, and it is more 

appropriate to use the Student’s t-distribution instead of the 
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normal distribution.
[4]

  In many respects, the Student’s t-

distribution is similar to the normal distribution, in that the 

distribution is bell shaped, but is much more appropriate for 

small sample sizes.  The Student’s t-distribution has an 

interesting history, and we actually have the Guinness 

Brewery to thank for it.  A man named William Gosset first 

developed the ideas for the t-distribution working with 

samples of the raw materials for the making of beer, but 

Guinness did not allow its employees to publish scientific 

papers.  The reasons for this ban aren’t exactly clear, but 

Gosset saw great potential for his work, and published his 

initial work under the name Student.
[5]

  Subsequent follow-

on work by a number of other mathematicians fleshed out 

the theory, but the name stuck. 

In order to use hypothesis testing and the Student’s t-

distribution, we must assume that the population of fuel 

consumption data from which we are sampling from has an 

approximately normal probability distribution, and that the 

samples are selected independently (in other words, we 

acquire the data without changing the way we conduct the 

tests). 

Hypothesis testing relies on establishment of a sample 

mean and standard deviation from the acquired fuel 

consumption data, and relies on the evaluator to provide an 

expected level of confidence in the results.  Typically, the 

level of confidence is established at 95% or 99%, which 

means that once the hypothesis test is conducted and the 

statistics are calculated, we are 95% or 99% confident that 

our statistical test provides a correct decision.  These levels 

of confidence are closely tied to the area under the 

probability density function (pdf).  In general terms the 

ability to render a decision on comparisons of sample means 

between two populations increases as the area of overlap of 

the two distributions decreases.  Figure 2 depicts this 

phenomenon graphically.  In the first group of figure 2, our 

populations have similar means and there is a high degree of 

overlap between the two probability density functions.  We 

would have very little confidence that there is a statistically 

significant difference between samples from these two 

populations.  The second portion of the figure shows similar 

probability density functions, with less overlap.  Less 

overlap means less shared area under each of the density 

functions, and we would have more confidence that there is 

a statistically significant difference between the two 

population means.  The last figure shows even more 

separation, less area of overlap, and hence increasing 

confidence.  One of the easiest ways to accomplish the final 

portion of Figure 2 is to decrease variability (standard 

deviation) of the sample data.  
.   

 
 

 
 

 

 
Figure 2:  Three examples of probability density functions 

with varying mean differences. 

 

HYPOTHESIS TESTING EXAMPLES AND 
IMPLEMENTATION 

For purposes of explanation, consider the following 

fictional example for fuel consumption test data.  A materiel 

developer wants to apply a fuel additive to the fuel system of 

a 5-ton truck and would like to know if the additive provides 

a statistically significant increase in fuel economy.  The first 

set of five fuel consumption tests were run with the standard 

fuel mixture, and the second set were run in the same way 

with the fuel additive.  Test results are presented in Table 2. 
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TABLE 2. SAMPLE FUEL CONSUMPTION DATA  

FOR A FICTITIOUS TEST PROGRAM 

 

Sample Without 

Additive, Pounds 

per Hour 

With Additive, 

Pounds per Hour 

1 39.6 38.3 

2 41.1 40.6 

3 38.4 39.1 

4 39.7 38.8 

5 40.5 40.0 

Sample 

mean,  

39.9 39.4 

Standard 

Deviation, s 

1.02 0.93 

 
Let’s compare the means and standard deviations for these 

two sets of data.  Without the additive, the mean is 39.9 pph, 

while the standard deviation is 1.02 pph.  With the additive, 

the mean is 39.4 pph, with a standard deviation of 0.93 pph.  

By comparing only the means of the two data sets, one 

might argue that the additive decreased the amount of fuel 

burned by 0.5 pph.  Thousands of 5-ton trucks burning fuel 

in theater on a daily basis means that even a 0.5 pph 

difference can probably be sold as a decrease in costs.  But is 

this difference merely statistical chance? 

We’ll conduct a hypothesis test to determine if the 

difference is statistically significant.  In this case, we must 

pick an assumption (a null hypothesis in statistical terms), 

and we’ll assume that for purposes of our test that the two 

means of the fuel consumption populations are equal – that 

there is no difference between the means.  Alternatively, 

we’ll pick an alternative hypothesis that the mean of our fuel 

consumption population obtained with the fuel additive is 

less than that obtained without the fuel additive.  Because 

we’re indicating that in our alternate hypothesis that one 

population will be better than the other, we’re conducting 

what’s called a one-tail hypothesis test.  The other option 

(which won’t be discussed in this example) would be a two-

tailed hypothesis test, in which we’d propose as an 

alternative hypothesis that the fuel consumption would either 

be better or worse than the fuel consumption obtained with 

the standard fuel mixture.  For this example, a one-tailed 

hypothesis test for fuel consumption parameters will be 

conducted at a one-percent level of significance (or a 99% 

level of confidence) using the following formulas:
[4] 

 

   , 

 

, 

 

, 

 

and, , 

 
where  is the null hypothesis (the two population means 

for fuel usage are equal),  is the alternate hypothesis (the 

population mean for fuel usage without the additive is 

greater than the fuel usage with additive),  is the 

population mean for fuel usage without the additive,  is 

the population mean for fuel usage with the additive, t is the 

test statistic to be compared with the student-t distribution, 

 is the mean of the fuel use samples without the 

additive, is the mean of the fuel use samples with the 

additive,  is the number of samples taken without the 

additive,  is the number of samples taken with the 

additive,  is the standard deviation of the fuel use samples 

taken without the additive, and  is the standard deviation 

of the fuel use samples taken with the additive.   

Using the fuel consumption values, means and standard 

deviations listed above, we substitute into the equations to 

calculate the t-statistic. 

 

  = 0.976 

 

 = 0.81 

 
The test statistic, t, for this test scenario is then compared 

to the Student’s t-distribution statistic at a one-percent level 

of significance,  using  degrees of 

freedom.  Student’s t-distribution tables are available in 

statistical textbooks as charts listed by degrees of freedom 

and levels of significance.  A 1-percent level of significance 

means we have a 1-percent chance of rejecting a null 

hypothesis when we should accept it, and we have a 1-

percent chance of accepting a null hypothesis when we 

should reject it.  For the test scenario (five trials without the 

additive ( ) and five trials with the additive 

( )), there would be 8 degrees of freedom.  Thus, by 

consulting a table of the Student’s t-distribution, the 

Student’s t-statistic for rejection of the null hypothesis (that 

the two sample means are equal) is established at 2.896.  The 

null hypothesis would be rejected (the fuel usage with the 

additive was significantly less than the baseline condition) 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Hypothesis Testing and Comparison of Fuel Consumption Test Results, Todd A. Morris.   

Approved for public release; distribution is unlimited. 

 

Page 5 of 5 

only if t is greater than 2.896.  In our case, t was 0.81, so we 

cannot reject the null hypothesis that the fuel consumption 

with and without the additive is any different.  We would 

then state that we cannot say that the additive had a 

statistically significant effect on the fuel consumption.   

 In general, the ability to reject the null hypothesis and 

determine that two populations are statistically different is 

aided by increasing the sample size and decreasing the 

variability of the test statistic.  Tests should be designed (if 

funding is available) with large numbers of samples, and 

variability in test methods should be minimized. 

For example, what if we were able to secure funding to do 

two more test runs with and without the additive, and we 

only tested the vehicle with the same driver for each test to 

reduce possible differences in driving through the test 

course.  Maybe our data might look Table 3. 

 

TABLE 3. SAMPLE FUEL CONSUMPTION DATA  

FOR A FICTITIOUS TEST PROGRAM 

 

Sample Without Additive, 

Pounds per Hour 

With Additive, 

Pounds per Hour 

1 40.0 39.2 

2 40.1 39.2 

3 39.8 39.1 

4 39.7 39.2 

5 40.1 40.0 

6 39.8 39.5 

7 39.6 39.5 

Sample 

mean,  

39.9 39.4 

Standard 

Deviation, s 

0.20 0.31 

 

 

By comparing only the means, we would again think that 

the additive decreased the amount of fuel burned by 0.5 pph.  

We should also note that our standard deviations are now 

smaller.  Let’s consider our hypothesis test and 

accompanying statistics. 

 

 Using the fuel consumption values, means and 

standard deviations listed above, we substitute into the 

equations to calculate the t-statistic. 

 

  = 0.263 

 
 

 = 3.56 

 
The test statistic, t, for this test scenario is then compared 

to the Student’s t-distribution statistic at a one-percent level 

of significance,  using  degrees of 

freedom.  For the test scenario (seven trials without the 

additive ( ) and seven trials with the additive 

( )), there would be 12 degrees of freedom.  Thus, by 

consulting a table of the Student’s t-distribution, the 

Student’s t-statistic for rejection of the null hypothesis (that 

the two sample means are equal) is established at 2.681.  The 

null hypothesis would be rejected (the fuel usage with the 

additive was significantly less than the baseline condition) 

only if t is greater than 2.681.  In our case, t is 3.56, so we 

can reject the null hypothesis, and accept the alternate 

hypothesis that the fuel additive decreases fuel consumption.  

You can see from this example, that increasing the sample 

size and decreasing variability in the results can make a 

small difference in means statistically significant.   

 

CONCLUSION 
We can see that the application of hypothesis testing can 

be quite powerful and convincing.  There are very few 

occasions in the real world when we’ll be able to say we’re 

confident in a result, and be able to quantify the level of our 

confidence.  By considering the variability of test data, and 

armed with some simple equations for the calculation of test 

statistics, hypothesis testing can be a useful tool.  In terms of 

fuel consumption, even small improvements in fuel 

economy would be embraced, but there must be confidence 

that the means of accomplishing the improvement are truly 

effective.   
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